
Progress of Theoretical Physics Supplement No. 166, 2007 45

Gluing Torus Families across a Singularity: The Lens Space for the
Hydrogen Atom in Crossed Fields

Thomas Bartsch,1 Stephan Gekle,2 Jörg Main3 and Turgay Uzer4

1Department of Mathematical Sciences, Loughborough University,
Loughborough LE11 3TU, UK

2Department of Applied Physics, University of Twente, 7500 AE Enschede,
The Netherlands

3Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
4Center for Nonlinear Science, School of Physics, Georgia Institute of Technology,

Atlanta, GA 30332-0430, USA

We demonstrate that topological information that can be extracted from periodic orbits
in a near-integrable system can lead to a complete topological characterization of families
of invariant 2-tori in terms of lens spaces. This approach ties in with the techniques we
developed for classifying the tori in systems with more than two degrees of freedom. It
therefore offers a general way to investigate families of invariant 2-tori in higher-dimensional
Hamiltonian systems.

§1. Introduction

Periodic orbits are the simplest invariant objects in the phase space of a dynam-
ical system.1) Because they form the fundamental building blocks of the dynamics
and because they are much simpler to calculate numerically than any more com-
plicated structures, they are widely used as a tool to study the geometrical and
dynamical structure of a multidimensional phase space.2),3) In a near-integrable
system, the phase-space structure is dominated by a hierarchy of invariant tori of
various dimensions. As we showed in a recent series of publications,4) the existence
of such a hierarchy, about which no detailed knowledge is required, can be used to
impose an ordering principle upon the periodic orbits, and conversely, this order-
ing of periodic orbits allows one to obtain information about the higher-dimensional
invariant tori that are not easily accessible through direct numerical methods.

In the present paper we will demonstrate how the results of our earlier work can
be extended into a complete topological characterization of families of invariant tori.
Since we found the familiar Poincaré surface of section plots a somewhat unreliable
tool to this end, we will analyze the singularities of Poincaré maps that lead to this
failure, and we will show how the nature of the singularities is related to the topology
of the family of tori under consideration.

Because the present paper is focused on the topology of families of 2-tori, which
exist in systems with two or more degrees of freedom, and on their representation
in Poincaré plots, which are available only in two degrees of freedom, we will largely
restrict our discussion to this case. Nevertheless, we will also show how these results
can be generalized to higher-dimensional systems.

The outline of the paper is as follows: In §2 we briefly review the properties of

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.166.45/1941566 by guest on 08 M

arch 2024



46 T. Bartsch, S. Gekle, J. Main and T. Uzer

Hamiltonian systems that we will need. Sections 3 and 4 describe the invariant tori
in two example systems, namely the crossed-fields hydrogen atom (following Ref. 4))
and the two-dimensional harmonic oscillator. Section 5 outlines the theory of lens
spaces that we need to carry out the topological classification of the families of tori,
which we do in §6.

§2. Phase space structures in Hamiltonian systems

Among all Hamiltonian systems, integrable systems exhibit the most regular
dynamics. By definition, a system with two degrees of freedom is integrable if it
possesses a constant of motion independent of the Hamiltonian. The regular level sets
of these constants are 2-dimensional tori if they are compact.5),6) In an integrable
system, action-angle variables (I, ϕ) can be introduced such that (i) the action
variables I are constants of motion and characterize the invariant tori, (ii) the angles
ϕ determine the position on an individual torus, and they increase linearly with time

ϕ(t) = ωt + ϕ0 , (1)

with a constant frequency vector ω(I) and initial conditions ϕ0. If the ratio of the
frequencies on a torus is rational,

ω1/ω2 = w1/w2 , (2)

that torus is called resonant. It carries periodic orbits (POs), and the integer winding
numbers wi specify how often the angle ϕi runs though the range from 0 to 2π before
the POs repeat themselves.

Angle coordinates ϕ on a given torus can be defined in various ways.7) Apart
from a choice of origin, which is inconsequential, any two angle coordinate systems
are related by a linear transformation

ϕ0 = M · ϕ , (3)

where M is a 2 × 2 integer matrix with detM = ±1. The action coordinates must
be transformed according to

I0 = (MT)−1 · I , (4)

whereas the winding numbers on a rational torus transform as the angles in Eq. (3).
In a non-integrable system, a resonant torus breaks up into isolated POs.5),8)

According to Kolmogorov-Arnold-Moser (KAM) theory,5),9) most nonresonant tori
remain intact in a near-integrable system and break up only gradually. They are
interspersed with the isolated POs in the same way as resonant and nonresonant tori
are interspersed in the integrable limit. Therefore, POs can be used to investigate
the structure of both the surviving tori in the perturbed system and the continuous
family of invariant tori in the integrable limit. Because of this close connection
between POs and invariant tori, and for simplicity of expression, we will not always
distinguish between broken and surviving tori. We will usually speak of the invariant
tori as if they occurred in a continuous family even in the non-integrable setting,
keeping in mind that we gain information on this family only through the POs that
arise from the breakup of the resonant tori.
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Gluing Torus Families across a Singularity 47

§3. Invariant tori in the crossed-fields hydrogen atom

In this section, we will briefly summarize the key facts concerning the POs and
invariant tori in the crossed-fields hydrogen atom that were obtained in Ref. 4), to
which the reader is referred for further details. Although the focus of Ref. 4) is
the development of computational tools that allow one to characterize the topology
of invariant tori in systems with more than two degrees of freedom, here we will
restrict our discussion, for simplicity, to a two-degree-of-freedom subsystem of the
full three-dimensional dynamics, viz. the plane perpendicular to the magnetic field.
As will be discussed briefly in §6, the results obtained here generalize immediately
to the higher-dimensional setting of Ref. 4).

The electron motion in a hydrogen atom exposed to an electric field F in the x
direction and a magnetic field B in the z direction is governed by the Hamiltonian,10)

in atomic units,

Hatom =
1
2
p2 − 1

r
+

B

2
(pyx − pxy) +

B2

8
(
x2 + y2

)
− Fx , (5)

where the position vector is r = (x, y), the conjugate momentum p = (px, py), and
r =

√
x2 + y2. The dynamics described by the Hamiltonian (5) is integrable in the

absence of external fields, i.e. for B = 0 and F = 0. Integrability is lost if B > 0.
We will here treat the crossed-fields hydrogen atom in a parameter range where the
phase space structure is dominated by the remnants of invariant tori. Nevertheless,
the external fields are chosen too strong for perturbation theory to be a reliable tool,
and we will consider the full nonintegrable Hamiltonian (5).

Our study of the crossed-fields system begins with a numerical search for POs.
The resulting POs are represented in Fig. 1. The two shortest or fundamental
periodic orbits (FPOs) are marked with S+ and S−, following the notation of
Refs. 11) and 12). As can be clearly seen in the Poincaré surface of section plot
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Fig. 1. Two representations of the POs in the planar crossed-fields hydrogen atom: (a) Poincaré

surface of section plot y = 0. Non-fundamental POs are labeled with winding numbers transverse

and longitudinal to the FPO around which they are centered. The vertical line at x = 0 indicates

the location of the Coulomb singularity. (b) Periods and actions of the fundamental (circles)

and non-fundamental (crossed) POs and their repetitions.
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in Fig. 1(a), both FPOs are stable and are surrounded by families of invariant 2-
tori (which we identify through the isolated POs embedded in them, as discussed
above). In the terminology of Ref. 4), the FPOs serve as organizing centers for
the POs surrounding them. The plot clearly exhibits two distinct families of 2-tori
that are organized by the two FPOs and separated from each other by the Coulomb
singularity at x = 0.

A very different view of the scenario is offered by Fig. 1(b), which displays the
periods and actions of the POs. In this graph the FPOs S+ and S− and their two-,
three-, and higher-fold repetitions appear on straight lines through the origin. The
non-fundamental POs fall in series that begin and end at the lines formed by the
FPOs. These series indicate that the POs should be regarded as forming a single
family that stretches continuously from one FPO to the other and for which both
FPOs serve as organizing centers. This interpretation is justified in more detail in
Ref. 4).

When the continuous family of invariant tori is projected into a Poincaré surface
of section, every torus appears as a closed curve surrounding one of the FPOs. On
a planar surface it is impossible to achieve a continuous transition from curves that
enclose S− to those that enclose S+. Therefore, a singularity must appear that
separates the two half-families. In this case, the Coulomb singularity at x = y = 0
naturally serves this purpose. The appearance of the Poincaré plot can be reconciled
with the existence of a single family if it is assumed that the two half-families are
glued together, i.e. the outermost tori of the two half-families are identified. The
topology of the total family is then determined by the way in which this identification
is carried out. If it is possible, therefore, to specify the map through which the two
boundary tori are identified, the topology of the family is known.

As described in Ref. 4), this can indeed be achieved by noting that each FPO
imposes a specific system of angle coordinates upon the surrounding tori so that one
“longitudinal” angle coordinate ϕl describes the motion along the FPO, the other
coordinate ϕt the motion transverse to it. Through a careful analysis of the winding
numbers associated with the POs in these two coordinate systems, it can be shown
that the systems (ϕ−

t , ϕ−
l ) and (ϕ+

t , ϕ+
l ) imposed by S− and S+, respectively, are

related by (
ϕ+

t

ϕ+
l

)
= Matom ·

(
ϕ−

t

ϕ−
l

)
(6)

with the integer matrix

Matom =
(

1 0
2 1

)
. (7)

This matrix was determined in Ref. 4), but its topological implications were not
spelled out in detail. This will be done below.

§4. Invariant tori in the harmonic oscillator

To put the phenomenon discussed in the previous section into a broader context,
we will now study a similar, though simpler, situation in which a continuous family
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Gluing Torus Families across a Singularity 49

Fig. 2. Illustration of the two-dimensional harmonic oscillator (8) with ωx = 1 and ωy = 2. Super-

imposed over the level lines of the potential energy are the FPOs in the x and y direction for

E = 1 (thick lines) and the rotated coordinate system (10). Both FPOs intersect the surface of

section v = 0 (which coincides with the u-axis) at u = 0.

of 2-tori are split into two half-families in a Poincaré plot. That example, in which
we will be able to carry out all calculations explicitly, is provided by the anisotropic
two-dimensional harmonic oscillator described by the Hamiltonian

Hosc =
1
2
(
p2

x + p2
y

)
+

ω2
x

2
x2 +

ω2
y

2
y2

= ωxIx + ωyIy , (8)

where in the second line the Hamiltonian has been rewritten in terms of the action
variables13)

Ix =
1
2

(
p2

x

ωx
+ ωxx2

)
, Iy =

1
2

(
p2

y

ωy
+ ωyy

2

)
. (9)

The energy shell for a fixed energy E > 0 is foliated into invariant 2-tori that are
characterized by fixed values of the actions Ix and Iy related by ωxIx + ωyIy = E.
In the limit Iy = 0, only the motion in the x direction is excited and the tori
degenerate into a fundamental periodic orbit FPOx along the x axis (see Fig. 2).
In the opposite limit Ix = 0, a second fundamental periodic orbit FPOy along the
y axis is approached. It is therefore clear that there is a single family of invariant
tori for which both FPOs act as organizing centers in the sense of §3. Nevertheless,
we will see that in a Poincaré surface of section plot this family appears split into
two half-families separated by a singularity, and we will find that the topology of
the family is characterized by the way in which the half-families are glued together
across the singularity.

To find a suitable surface of section that is intersected transversely by both FPOs
(so that both FPOs are visible in the plot), we introduce the coordinate system

u =
1√
2
(y + x) , v =

1√
2
(y − x) , (10)
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Fig. 3. Poincaré surface of section plot v = 0, pv ≥ 0 for the two-dimensional harmonic oscillator (8)

with ωx = 1, ωy = 2 and E = 1. Bold line: critical curve pv = 0 where the flow is tangent to

the surface of section. Thin lines: invariant tori. For clarity, tori that intersect the critical curve

are distinguished by different line types.

which is obtained from the x-y system through a rotation by 45◦ (see Fig. 2). In
these coordinates, we pick the surface of section v = 0. For fixed energy E and a
fixed starting point (u, pu) on the surface of section, the second component of the
momentum is fixed by energy conservation to be

pv =
√

2E − 1
2

(
ω2

x + ω2
y

)
u2 − p2

u ,

where we use the positive square root. For this value to be real, the starting point
must be located within the ellipse

1
2

(
ω2

x + ω2
y

)
u2 + p2

u = 2E . (11)

On the ellipse itself, the velocity transverse to the surface of section is v̇ = pv = 0.
Thus, on this critical curve the Hamiltonian flow is tangential to the surface. The
critical curve itself is not invariant under the flow, which in general leads to discon-
tinuities of the Poincaré map.14) We avoid discontinuities in this case because the
critical curve is the boundary of the surface of section. Nevertheless, the topology of
the entire family of invariant tori is not represented faithfully (as, again, it cannot be
in a planar plot). Each FPO is surrounded by invariant tori that intersect the surface
of section in a closed curve that encloses the FPO. Some tori, however, intersect the
critical curve and appear split into two segments, not as a closed curve. Precisely
which tori suffer this distortion depends on the choice of the surface of section. Thus,
the singularity that splits the family of tori into half-families in the Poincaré plot is
here induced by the coordinate system (u, v) used to define the surface of section.
It is not a physical singularity of the flow, as it was in the crossed-fields hydrogen
atom.

For the harmonic oscillator, it is easy to see how the two half-families of POs
must be glued together: In the vicinity of FPOx, the motion in the x direction is
longitudinal, the motion in the y direction is transverse. Conversely, in the neigh-
bourhood of FPOy, the y motion is longitudinal, the x motion is transverse. The
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Gluing Torus Families across a Singularity 51

change of coordinates that maps the longitudinal and transverse modes around FPOx

to those around FPOy must exchange x and y dynamics and is therefore given by
the gluing matrix

Mosc =
(

0 1
1 0

)
. (12)

§5. Lens spaces

The examples described in §§3 and 4 have a similar structure: The energy shell
is foliated into families of invariant 2-tori that degenerate into two stable FPOs
in two opposite limits. In a Poincaré plot, however, this family appears split into
two half-families separated by a singularity. The entire family of tori, including
both FPOs, can be obtained by gluing together the two half-families along their
boundaries, using an identification of the boundary tori that is given by the gluing
matrix M in Eqs. (7) or (12). Because the gluing matrix describes how the tori are
to be connected across the singularity, it becomes plausible to regard it as describing
a property of the singularity itself, be it the physical singularity of the Coulomb
potential in Eq. (7) or the coordinate-induced singularity of the Poincaré map in
Eq. (12).

The gluing procedure required here is a well-studied operation. It yields a topo-
logical space known as a three-dimensional lens space.15)–17) Specifically, if the gluing
is carried out with the gluing matrix

M =
(

p r
q s

)
, (13)

where q > 0 and 0 ≤ p < q, one obtains the lens space Lp/q. As discussed in §2,
the coordinate-change matrix M is required to satisfy detM = ps − qr = ±1,
which implies that p and q are coprime. For these spaces, a complete topological
classification exists that will be outlined below. It can be used to identify the exact
topologies of the families of invariant tori that are present in the examples described
above. Important special cases of lens spaces are the following: The space L0/1 is
homeomorphic to the 3-sphere S3. The degenerate lens space L1/0 where M is the
identity matrix is S1 × S2. The space L1/2 is homeomorphic to projective 3-space
RP

3, i.e., the set of all straight lines though the origin in R
4. Alternatively, RP

3 can
be described as the 3-sphere with antipodal points identified.

To understand the implications of the definition of lens spaces more fully, it is
important to notice that the systems of longitudinal and transverse coordinates that
the FPOs impose upon the 2-tori are not defined uniquely. Changes in these coordi-
nate systems will lead to changes in the gluing matrix that maps one local coordinate
system to the other, so that not all entries of M carry meaningful topological infor-
mation. Specifically, the local coordinate systems are defined by the conditions that
the longitudinal action coordinate Il converges to the action of the FPO as the FPO
is approached and the transverse action variable It tends to zero.4) These conditions
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leave the freedom to redefine the action variables according to

It �→ It , Il �→ Il + kIt (14)

with an arbitrary integer k. Correspondingly, the canonically conjugate angle vari-
ables have to be redefined as

ϕt �→ ϕt − kϕl , ϕl �→ ϕl (15)

or (
ϕt

ϕl

)
�→ Ak ·

(
ϕt

ϕl

)
with Ak =

(
1 −k
0 1

)
. (16)

Such redefinitions of the coordinates can be carried out independently around both
FPOs before the two halves of the family are glued together. They lead to a change
of the gluing matrix given by

M �→ Ak′MA−1
k =

(
p − k′q pk − kk′q + r − k′s

q s + qk

)
. (17)

Thus, the entry q is invariant under the coordinate change, and p and s are invariant
up to multiples of q, i.e. they are invariant modulo q.

In addition to the coordinate change (14), we are free to change the sign of
one of the angle variables in either half-family which amounts to changing the signs
in either a row or a column of M . We can use this freedom in the choice of sign
and in the choice of k and k′ in Eq. (17) to reduce any given gluing matrix M with
q �= 0 to a form with q > 0 and 0 ≤ p < q, so that the glued family of tori is always
homeomorphic to one of the lens spaces Lp/q defined above. In the exceptional case
that q = 0, we must have p = ±1 and s = ±1 because det M = ps − qr = ±1. We
can then reduce M to the identity matrix and obtain the degenerate lens space L1/0.

Not all lens spaces obtained in this way are different. We can transform the
entry p of the gluing matrix into q − p, so that the lens spaces Lp/q and L(q−p)/q

must be homeomorphic. Moreover, we can obtain the same glued family of tori if we
interchange the roles of the two half-families and thereby replace the gluing matrix
M by its inverse

M−1 =
(

s −r
−q p

)
. (18)

After a change of signs, we thus find that Lp/q is homeomorphic to Ls/q. At first
sight, this might seem to imply that Lp/q and Ls/q are homeomorphic for any p, q, s.
However, not all values s can occur in the gluing matrix (13) for given p and q, but
only those for which there is an integer r such that detM = ps − qr = ±1, or, in
other words those for which ps = ±1 modulo q.

In summary, we have found that the lens spaces Lp/q and Lp′/q are homeomorphic
if p = ±p′ modulo q or pp′ = ±1 modulo q. Conversely, it can be shown15)–17) that
any two homeomorphic lens spaces must satisfy one of these conditions, which gives
us a complete topological classification of lens spaces.
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§6. Gluing across singularities

With the classification of lens spaces at our disposal, we can use it to identify
the topologies of the families of tori encountered in §§3 and 4. Since in both cases
the tori foliate the entire energy shell, this is at the same time the topology of the
energy shell.

For the harmonic oscillator discussed in §4, the gluing of the two half-families
of tori with the gluing matrix Mosc in Eq. (12) yields the lens space L0/1, which is
homeomorphic to the 3-sphere S3. This result can easily be confirmed by studying
the energy shell of the Hamiltonian (8) directly: The equation Hosc = E of the
energy shell describes an ellipsoid in phase space, which is topologically equivalent to
a sphere. This simple example illustrates that the gluing procedure derived from the
study of Poincaré plots and their singularities provides a reliable tool to investigate
the topology of the energy shell.

In contrast to the result for the harmonic oscillator, the topology of the energy
shell in the crossed-fields hydrogen atom is far from obvious. Using the gluing matrix
Matom in Eq. (7) yields the lens space L1/2, which is homeomorphic to real projective
3-space RP

3. This remarkable finding implies, in particular, that the energy shell in
the planar crossed-fields system is not orientable.

It has been argued above that the gluing matrix should be regarded as a property
of the singularity that the gluing has to bridge. If this is correct, the topology found
in the crossed-field hydrogen atom should be determined only by the Coulomb singu-
larity, and it should be possible to find the same topology in the field-free hydrogen
atom, i.e. the unperturbed planar Kepler problem. That this is indeed the case can
be seen if one uses the well known Moser regularization of the Kepler problem,18)

which uses a stereographic projection in momentum space and a rescaling of time
to map the planar Kepler problem to the geodesic motion on the 2-sphere, i.e. the
dynamics of a free particle that is constrained to move on a sphere. The phase space
of this geodesic motion is the tangent bundle of the sphere, the set of all pairs (q, p)
of 3-dimensional vectors, where q denotes a position on the sphere (|q| = 1) and p
is a momentum vector perpendicular to q. The energy shell in this phase space is
given by

Hfree =
p2

2
= E (19)

or |p| =
√

2E. If we choose units such that E = 1/2, the energy shell consists of all
phase space points with |p| = 1. This set, which is called the unit tangent bundle of
the 2-sphere, is homeomorphic15) to the projective space RP

3.
Thus, we obtain the same topology from the study of the unperturbed Kepler

problem that was found through the study of POs in the crossed-fields system. How-
ever, there is a caveat: RP

3 is homeomorphic to the energy shell of the regularized
Kepler problem. The energy shell of the true, non-regularized Kepler problem is
obtained when all phase space points are removed in which the electron is located
at the singularity. Because the electron can enter into the singularity from every
direction, these points form a circle in phase space. This need to regularize is anal-
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ogous to what is found in the harmonic oscillator: In that case, some tori encounter
the coordinate-induced singularity of the Poincaré map and are therefore not part
of either half-family. Nevertheless, the energy shell contains these tori. In a similar
manner, the points in the Coulomb singularity must be included in the energy shell
that has the topology described by the gluing procedure.

So far, we have restricted our discussion to systems with two degrees of free-
dom. The investigations of Ref. 4), by contrast, were focused on invariant tori in a
higher-dimensional phase space. In particular, we there identified a second family of
invariant 2-tori that do not lie in the 2-dimensional subsystem studied here. Never-
theless, this family is characterized by the same gluing matrix Matom, and we can
conclude that it must also be homeomorphic to the projective space RP

3. Because
this family is also obtained by gluing across the Coulomb singularity, this observa-
tion confirms that the gluing matrix can be regarded as a property of the singularity
across which the gluing is carried out.

We have demonstrated in two examples that topological information that can
be extracted from periodic orbits in a near-integrable system can lead to a complete
topological characterization of families of invariant 2-tori in terms of lens spaces. This
approach ties in neatly with the techniques developed in Ref. 4) to study systems with
more than two degrees of freedom. It therefore offers a general way to investigate
families of invariant 2-tori in higher-dimensional Hamiltonian systems.
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